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Abstract

A simple two-by-two model for a boiler-turbine unit is demonstrated in this paper. The model can captu
essential dynamics of a unit. The design of a coordinated controller is discussed based on this model. A PID
structure is derived, and a tuning procedure is proposed. The examples show that the method is easy to appl
achieve acceptable performance. © 2004 ISA—The Instrumentation, Systems, and Automation Society.
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1. Introduction

A common way to generate electric power is
use drum boilers to produce steam and make
steam drive turbogenerators to generate electric
Two types of configurations exist for this purpos

1. A header is used to accommodate all t
steam produced from several boilers, and
steam is then distributed to several turbin
through the header. The capacity of the bo
ers used in this configuration is usual
small. The steam can be used for generat
electricity as well as other purposes. Th
configuration is commonly used in industri
utility plants.

2. A single boiler is used to generate steam t
is directly fed to a single turbine. This con
figuration is usually called a boiler-turbin
unit. The capacity of the boilers used in th
configuration is very large compared wit
the first configuration.

*Corresponding author. Tel.:~86! 10 80798466.E-mail
address: wtan@ieee.org
0019-0578/2004/$ - see front matter © 2004 ISA—The Instru
.

In this paper we will concentrate on a boile
turbine unit since this configuration is more com
mon in a modern power plant due to the possib
quick response to the electricity demand from t
power grid or network. The control system for
boiler-turbine unit usually needs to meet the fo
lowing requirements:

• Electric power output must be able to follow
the demand by the dispatch.

• Throttle pressure must be maintained desp
variations of the load.

• The amount of water in the steam drum mu
be maintained at a desired level to preve
overheating of the drum or flooding of stea
lines.

• Steam temperature must be maintained a
desired level to prevent overheating of th
superheaters and to prevent wet steam fr
entering turbines.

• The mixture of fuel and air in the combus
tion chamber must meet standards for safe
efficiency, and environment protection
which is usually accomplished by maintain
ing a desired level of excess oxygen.
mentation, Systems, and Automation Society.
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Nomenclature

Parameters Description
B Boiler firing rate~fuel demand!
m Governor valve position
N Electricity generated
PT Throttle pressure
PD Drum pressure
SG Steam generation
SF Turbine steam flow
CB Boiler storage constant
KSH Superheater friction drop

coefficient

To fulfill the complex control objectives listed
above, the control system for a power plant is u
ally divided into several subsystems@1#. For ex-
ample, the feedwater control subsystem is used
regulate the drum level; the temperature cont
subsystem is used to regulate the steam temp
ture; and the air control subsystem is used to re
late the excess oxygen. Since the couplings
tween the drum level, the steam temperature
the excess oxygen are not strong, these three
systems can be designed independently. Thus
boiler-turbine unit can be modeled as a232 sys-
tem. The two inputs are boiler firing rate~or fuel
flow rate, assuming air flow rate is regulated w
by air control subsystem! and governor valve po
sition. The two outputs are electric power a
throttle pressure.

Two conventional techniques for the control of
boiler-turbine unit are:

1. Boiler follows turbine~BFT!. The governor
valve is responsible for following the powe
demand and the firing rate for controllin
the throttle pressure.

2. Turbine follows boiler~TFB!. The firing rate
is responsible for following the power de
mand and the governor valve for controllin
the throttle pressure.

Note that both methods use single-loop controll
but different pairs for control. Since the thrott
pressure and the electric power are tigh
coupled, an advanced control techniques mi
give better performance than a decentralized o
This control technique is called ‘‘coordinated co
trol’’ in power plants since it coordinates the co
trol inputs based on both the electric power d
mand and the throttle pressure.
-

-
e

.

The controller design for a boiler-turbine un
has attracted much attention in the past yea
Modern control techniques have been applied
improve unit performance, e.g., LQG/LTR@2#, H`

control @3,4#. predictive control@5–9#, and fuzzy
control @10,11#. These results are encouragin
however, conventional PID controllers are eas
and quicker to implement.

Ref. @3# proposed a PID reduction procedure f
a centralized controller and showed that the p
formance of the final PI controller for a boiler
turbine unit did not degrade much from the orig
nal loop-shapingH` controller. Encouraged by
this result, this paper will examine PID tuning fo
a boiler-turbine unit. PID tuning for a single
variable process is well known, e.g., Refs.@12–
14#, and there are papers discussing PID tuning
two-by-two processes, e.g, Refs.@15–18#. How-
ever, the dynamics for a boiler-turbine unit is di
ferent from the first-order plus deadtime dynami
discussed in those papers, and a literature se
for PID tuning for a boiler-turbine unit did no
yield results.

It should be noted that modern control tec
niques might achieve better performance than
proposed method, since our controller is a tra
tional PID controller. The comparison of PID wit
modern control techniques, such as MPC, LQ
H` , can be found in the open literature. Genera
the advantage of a PID controller is its ease
implementation and tuning, while the advantage
a controller designed by modern techniques is
performance improvement. There is always
tradeoff between ease to use and cost to imp
ment and tune.

In Section 2 a simple model for a boiler-turbin
unit is derived. In Section 3 controller design fo
this model is discussed, and a control structure
found. A method is proposed to tune the para
eters. Examples are given in Section 4 to illustra
the proposed tuning method, and conclusions
given in Section 5. Throughout this paper,D is
used to denote the increment of a variable.

2. Simple boiler-turbine model for tuning

A first-order plus deadtime~FOPDT! model is
often used for PID tuning for single-variabl
stable systems. The underlying idea is that t
simple model can capture the essential dynam
of the system under consideration. So to stu
controller tuning for a boiler-turbine unit, it is
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helpful to find a simple model that can capture t
essential dynamics, especially the coupling eff
between the generated electricity and the thro
pressure. However, the complete dynamics o
boiler-turbine unit are very complex and hard
model @19#. Cheres@20# and de Mello@21# pro-
posed a nonlinear dynamic system with a sim
structure to capture the essential dynamics of
boiler-turbine unit~Fig. 1!.

The model in Fig. 1 shows the energy balan
relation and the essential nonlinear characteris
of the boiler-turbine system.

• The energy balance relation: Drum pressu
PD relates the balance between the ste
generationSG and the turbine steam flow
SF :

DSG2DSF5CB

dDPD

dt
. ~1!

• The two nonlinear characteristics are:

1. The pressure drop between the drum pr
surePD and the steam pressurePT is related
to the steam flowSF by:

PD2PT5KSHSF
2. ~2!

2. The steam flowSF is the product of the
throttle pressurePT and the turbine governo
positionm:

SF5mPT . ~3!

Consider a linearized model of the boiler-turbin
unit at a nominal operating point. Taking the i
crements on both sides of Eqs.~2! and ~3!, we
have

DPD2DPT5RDSF , ~4!

DSF5mDPT1PTDm, ~5!

whereR52KSHSF . Combining Eqs.~1!, ~4!, and
~5! we have

Fig. 1. A simple diagram of a boiler-turbine unit.
F DSF

DPT
G5F 1

T0s11

PTCBs

m~T0s11!

1

m~T0s11!
2

PT

m

Tbs11

T0s11

G FDSG

Dm G ,
~6!

where

T0ª~11mR!CB , TbªCBR. ~7!

The fuel dynamics can be modeled as a fir
order process,

DSG5
k1

T1s11
DB, ~8!

and the turbine dynamics can be modeled as

DN5
~aT2s11!k2

T2s11
DSF , ~9!

wherea is the ratio of the electric power gene
ated by the high-pressure turbine to the total el
tric power generated by the turbine. Combinin
Eqs. ~6!, ~8!, and ~9!, a linearized model of a
boiler-turbine unit at a certain operating point
obtained:

F DN
DPT

G

5F m11~aT2s11!

~T1s11!~T0s11!~T2s11!

m12s~aT2s11!

~T0s11!~T2s11!

m21

~T1s11!~T0s11!
2

m22~Tbs11!

T0s11

G
3FDB

Dm G ,
~10!

where

m11ªk1k2 , m12ª
PTCBk1

m
, m21ª

k1

m
,

m22ª
PT

m
. ~11!

Typical step responses for a boiler-turbine unit a
shown in Fig. 2. The model is simple but captur
the essential dynamics of the unit, and can serve
a base model for controller tuning.
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Fig. 2. Typical step responses for a boiler-turbine unit.
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3. Design and tuning of coordinated PID
controllers

3.1. Design

Consider a unity feedback system shown in F
3, whereG is the plant model,Gd is the distur-
bance model, andK is the controller.

It is well known that a well-designed contro
system should meet the following requiremen
besides the nominal stability:

• Set-point tracking,
• Disturbance attenuation,
• Robust stability and/or robust performanc

Fig. 3. Typical unity feedback configuration.
For a multivariable plant, set-point tracking re
quires that the system be decoupled. For a232
plant, suppose the model and the controller
decomposed as

G5FG11 G12

G21 G22
G , K5FK11 K12

K21 K22
G , ~12!

then open-loop system decoupling requires t
GK is diagonal, i.e.,

G11K121G12K2250, ~13!

G21K111G22K2150. ~14!

So a complete decoupler for a232 system takes
the following form:

K5F 1 2G12/G11

2G21/G22 1 GFK11 0

0 K22
G .
~15!

Now that the unit model is given by Eq.~10!, a
decoupler can then be designed according to
~15!,
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Fig. 4. Control structure of a boiler-turbine unit with a decoupler.
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K5F 1
m12

m11
s~T1s11!

m21

m22

1

~T1s11!~T0s11!
21

G
3FK11 0

0 K22
G . ~16!

However, the decoupler will be of high order an
not easy to implement, so some simplificatio
should be made. Since the time constantsT1 and
T0 are usually larger than 10 s for a typical boile
turbine unit, the dynamic effect of1/(T1s
11)(T0s11) can be ignored. The second-ord
derivative action ofs(11T1s) is not implement-
able so only the first-order derivative action is r
tained. The final PID controller for a boiler-turbin
unit takes the following form:

Kd~s!5F 1
m12

m11
s

m21

m22
21

G FPI1 0

0 PI2
G , ~17!

where PI1 and PI2 are two PI controllers to be
tuned to achieve the desired dynamic performa
for each loop. The whole control structure
shown in Fig. 4.

An alternative option is to use a static deco
pler:

Ks~s!5F 1 0

m21

m22
21G FPI1 0

0 PI2
G . ~18!
It is clear that if the two diagonal PI controllers i
Ks(s) andKd(s) are chosen as the same, then t
two controllers will have the same tracking perfo
mance for the electric powerN, but not for the
throttle pressurePT .

The decoupling effects of the decouplers o
tained above are not quite satisfactory, as can
seen in the examples below. From the model in
previous section, the system is coupled only in E
~6!. A new decoupler structure is described belo

Note that the inverse of Eq.~6! is

C~s!5F Tbs11 CBs

1

PT
2

m

PT

G . ~19!

So a candidate for the decoupler of the whole u
can be chosen as

W~s!5F T1s11

k1s
0

0
1

s

GC~s!F 1

k2
0

0 1
G

5F ~T1s11!~Tbs11!

k1k2s

~T1s11!CB

k1

1

k2PTs
2

m

PTs

G .

~20!

Here integrators were added to achieve no off
set-point tracking.

Next, two single-loop controllers for the diago
nal elements of the decoupled system need to
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Fig. 5. Coordinated control structure of a boiler-turbine unit.
hey
ra
re
r-

of

ller
nd-

he
a

ted

n-

n-
r-
D
st
is

e-
ree
designed to improve the dynamic responses. T
can be chosen as two PD controllers, since integ
action is already added and PD controllers a
known to be able to improve the dynamic perfo
mance. The final coordinated controller will be
the form

K~s!5F ~T1s11!~Tbs11!

k1k2s

~T1s11!CB

k1

1

k2PTs
2

m

PTs

G
3FPD1 0

0 PD2
G

5F ~T1s11!~Tbs11!

m11s

~T1s11!m12

m11m22

m21

m11m22s
2

1

m22s

G
3FPD1 0

0 PD2
G . ~21!

To ensure that each element of the final contro
can be realized with a PID structure, the seco
order polynomial(T1s11)(Tbs11) is approxi-
mated with a first-order one(T11Tb)s11, which
is possible as long asT1Tb is small. Moreover,
simulations show that the derivative action in t
~1,2! block is very sensitive to process noise, so
static gain is used instead. The final coordina
PID controller for the boiler-turbine unit is
l
Kc~s!5F ~T11Tb!s11

m11s

m12

m11m22

m21

m11m22s
2

1

m22s

G
3FPD1 0

0 PD2
G . ~22!

The whole control structure is shown in Fig. 5.

3.2. Tuning

Once the structure of the coordinated PID co
troller @Eqs. ~18!, ~17!, or ~22!# is adopted, the
parameters of the two single-loop PI or PD co
trollers need to be tuned to satisfy other perfo
mance of the system. Manual tuning of PI or P
controllers are well known. In this paper, robu
tuning of PID controllers is used. The method
proposed in Ref.@22#. The basic idea is that PID
controllers should be tuned to maximize the int
gral action under the constraint of a certain deg
of robust stability, i.e.,

maxsI ~Ki ! ~23!

under the constraint

«mªmDS F I
K G~ I 1GK!21@ I G# D,gm ,

~24!
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whereKi is the integral gain of a PID controlle
«m is the robustness measure, andgm is a given
robust stability requirement. Extensive simulatio
show that«m should lie between 3 and 5 to hav
good tradeoff between time-domain performan
and frequency-domain robustness@22#. In the ex-
amples below, iterative tuning of the PI or PD co
trollers is done: step responses are simulated
check if the parameters can achieve certain
namic performance, and the robustness measu
computed to make sure that it is less than 4.

4. Simulation studies

Three examples are given in this section to illu
trate the proposed PID structure and tuni
method for boiler-turbine units.

Example 1: Consider a boiler-turbine unit with
the following transfer function which was ob
tained by fitting the step response data:

G1~s!

5F 4.247~3.4s11!

~100s11!~20s11!~10s11!

3.224s~3.4s11!

~100s11!~10s11!

0.224

~100s11!~20s11!
2

0.19~20s11!

100s11

G .

~25!

The model is in the standard form. For this mod
we have

m1154.247, m1253.224, m2150.224,

m2250.19,

Tb520, T1520, T05100, T2510,

a50.34.

The coordinated controllers discussed in the p
vious section are

Kd1~s!5F 1 0.7591s

1.1789 21 G

3F 0.721
0.005

s
0

0 61
0.2

s

G , ~26!
s

Ks1~s!5F 1 0

1.1789 21G

3F 0.721
0.005

s
0

0 61
0.2

s

G , ~27!

Kc1~s!5F 9.4181
0.2355

s
3.995

0.2776

s
2

5.263

s

G
3F0.1~1125s! 0

0 0.1~1125s!G , ~28!

where the diagonal PI and PD controllers a
tuned such that the robustness measure in Eq.~24!
is less than 4.

The step responses for the closed-loop syst
~step starts fromt550) and the controller outputs
are shown in Fig. 6. It is clear that a step on t
electric power output has little effect on th
throttle pressure, and in this case both the gov
nor valve and the firing rate respond to the elect
power demand quickly, so the unit can follow th
demand and the resulting pressure oscillation c
be damped quickly. However, the pressure
mainly regulated by the governor valve, so it w
affect the electric power output. We can see th
Kc1 has the best decoupling effect.

Example 2: Consider a 300-MW coal-fired
once-through boiler-turbine unit. At full load, th
following transfer function was obtained by fittin
the step response data:

G2~s!

5F 2.069~311s11!

~149s11!2~22.4s11!

4.665s~99s11!

~582s2150s11!~4.1s11!

0.124~205s11!

~128s11!2~11.7s11!
2

0.139~2.8s11!

70s11

G .

~29!

The model is not exactly in the form in Eq.~10!.
However, we can still get the following param
eters from the model:

m1152.069, m1254.665, m2150.124,

m2250.139,
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Fig. 6. Responses for example 1~solid, Kc1 ; dash,Kd1 ; dash dotted,Ks1).
em
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Tb52.8, T1515.4689, T0570.

The three coordinated controllers are

Kd2~s!5F 1 2.2547s

0.8921 21 G

3F 0.4271
0.005

s
0

0
0.05

s

G , ~30!

Ks2~s!5F 1 0

0.8921 21GF 0.4271
0.005

s
0

0
0.05

s

G ,

~31!
Kc2~s!5F 8.831
0.4833

s
16.22

0.4312

s
2

7.194

s

G
3F0.08~1172.8s! 0

0 0.007G . ~32!

The step responses for the closed-loop syst
~step starts fromt550) and the controller outputs
are shown in Fig. 7. Again the electricity deman
can be followed quickly without affecting the
throttle pressure. However, the pressure respo
is a bit slower since the coupling is more seve
for this unit than the one in the previous examp
Among the three controllers,Kc2 has the best de
coupling effect.
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Fig. 7. Responses for example 2: full load~solid, Kc2 ; dash,Kd2 ; dash dotted,Ks2).
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To test the robustness of the tuned controlle
the transfer function for the unit obtained at 70
load is obtained:

F 2.116~457s11!

~221s11!2~21.8s11!

1.483s~150s11!

~632s2140s11!~2.7s11!

0.162~275s11!

~168s11!2~11.7s11!
2

0.081~0.97s11!

97s11

G .

~33!

At this load the step responses for the close
loop system are shown in Fig. 8. Clearly the r
sponses for the electric power degrade little for t
three controllers.
Example 3: Consider a boiler-turbine unit@4#
with the following transfer function:

G3~s!

5F 0.0595

s217.994s10.0326
e230s

33333s10.13

2760s21424s11

0.6852

s217.994s10.0326
e230s 2S 0.0151

5s11
1

80

s218.4s10.049D G .

~34!
The model appears quite different from our simp
model; however, its step response is quite sim
to the one shown in Fig. 2. So the simple mod
should capture the essential dynamics of the u

Since

m1151.8252, m12533333,

m21521.0184, m2251632.7,

and by curve fitting,
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Fig. 8. Responses for example 2: 70% load~solid: Kc2 ; dash:Kd2 ; dash dotted:Ks2).
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Tb'0, T1'37.1, T0'171.3.

The coordinated controllers are

Kd3~s!5F 1 1825s

0.0129 21 G

3F 0.081
0.004

s
0

0 0.00421
0.00003

s

G ,

~35!

Ks3~s!5F 1 0

0.0129 21G

3F 0.081
0.004

s
0

0 0.00421
0.00003

s

G ,

~36!

Kc3~s!5F 20.261
0.5479

s
11.19

0.007053

s
2

0.0006125

s

G
3F0.008~1130s! 0

0 0.02~1110s!G .
~37!
Kd3 has a very large derivative action on the~1,2!
block, which makes the closed-loop system u
stable, so the responses are not shown here.
step responses for the closed-loop system~step
starts fromt550), and the controller outputs ar
shown in Fig. 9. The unit is slow in following the
electricity demand due to a large time constantT0
~over 2 min!, however, the performance is still ac
ceptable.

It should be noted that in practical implement
tion the derivative action must be followed by
bound and/or a rate limit or a filter to soften th
unexpected sudden change on the control inp
and a filter can also be used to filter out the no
on the measurement. In this case the filter dyna
ics should be considered when tuning the PD co
trollers. If the time constant of the filter is sma
compared with the dynamics of the unit, then t
effect of the filter can be ignored. Fig. 10 show
the responses of the unit controlled byKc3 when
there are white noises in the measurement ofPT

and N. The power density of the noise is 0.1 fo
both measurements and the filter is chosen
1/(10s11) for both channels. It can be shown th
except the derivation due to the noise the ove
responses are similar to those without noise.

5. Conclusions

A simple model for a boiler-turbine unit was de
rived in the paper and a design and tuning meth
for the coordinated PID controller was propos
based on this model. Examples showed that
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Fig. 9. Responses for example 3~solid, Kc3 ; dash,Ks3).
pt
ce

fol-

-
,
a
-

method is easy to apply and can achieve acce
able performance. To achieve better performan
further researches should be directed to the
lowing:
-
,

• Modeling. Though the model used in this pa
per is sufficient for PID design and tuning
however, a more sophistic model for
boiler-turbine unit can reveal more informa
Fig. 10. Responses for example 3: Noisy measurements~solid, without noise; dash, with noise!.
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tion on the dynamics of a unit, and thus
more likely to have a better control.

• Control structure. Structures other than PID
might be better suited for the control of
unit. For example, model predictive tech
nique is one of the options that can be us
to improve the overall performance.
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